Heavy Crude Oil: A Global Analysis and Outlook to 2030

November 2010

LAURA ATKINS - Atkins has more than 20 years experience in the oil industry. She served as a Senior Research Analyst for OPEC studying energy technologies affecting oil demand. She also worked in engineering and new business development for ARCO and AMOCO in the US, South America and the Middle East.

TERRY HIGGINS - Higgins is Executive Director, Global Refining and Special Studies, at Hart Energy Consulting, and has more than 30 years of refining experience. He served as Technical Director of NPRA for 14 years and also worked with TEXACO, HESS, and US DOE

CONRAD BARNES - Conrad was an associate at IHS CERA where he lead the Capital Cost Analysis Forum's modeling and research on the global steel and the offshore rig markets. He also spent three years in their Global Oil group, responsible for fundamental analysis of crude oil and refined products and was a regular contributor to their World Oil Watch and monthly Market Briefings. Conrad was a strategy analyst at BJ Energy, where he was responsible for the for the oversight and management of royalty and operating assets.

A REPORT FROM HART ENERGY CONSULTING

With offices in more than 10 worldwide locations, Hart Energy Consulting provides expertise to major energy companies, key international organizations such as OPEC, CEN, ASTM, JPEC, ISO, APEC, UNPCFV and governmental bodies like US EPA, US DOE, White House Council on Environmental Quality, EU Commission, EU Parliament, Chinese Ministry of Environment Protection and Many more...www.hartenergyconsulting.com

© 2010, Hart Energy Consulting. All rights reserved. This material may not be published, broadcast, or distributed in whole or part without express written permission of Hart Energy Consulting.
TABLE OF CONTENTS

Section I: Executive Summary
I.1.1 Executive Summary 6
I.1.2 Regional Analyses 7
I.1.3 Technology 10
I.1.4 Assumptions and Inputs 10

Section II: Regional Heavy Oil and Bitumen Outlook
II.1 Introduction 12
II.2 North America 17
II.2.1 Resources and State of Development 17
II.2.2 Canada 19
II.2.3 Mexico 32
II.2.4 United States 34
II.2.5 North America Heavy Oil Disposition 40
II.3 South America 47
II.3.1 Brazil 48
II.3.2 Venezuela 50
II.3.3 Colombia, Ecuador and Peru 53
II.3.4 South America Heavy Crude Disposition 57
II.4 Europe, Russia and the CIS 59
II.4.1 United Kingdom 59
II.4.2 Norway 62
II.4.3 Continental Europe 63
II.4.4 Russia and CIS 63
II.4.5 Europe, Russia and the CIS Heavy Oil Disposition 66
II.5 Middle East 67
II.5.1 Iran 69
II.5.2 Iraq 71
II.5.3 Kuwait 73
II.5.4 Oman 74
II.5.5 Saudi Arabia and Bahrain 75
II.5.6 Syria 76
II.5.7 Middle East Heavy Oil Disposition 78
II.6 Asia-Pacific 82
Section III: Technology, Constraints and Environmental Impacts

III.1 Upstream Technologies
- III.1.1 Cold Production Methods
- III.1.2 Thermal Recovery Methods
- III.1.3 Carbonate Reservoirs
- III.1.4 Solvent Processes
- III.1.4 Alternative Technologies to Generate Steam
- III.1.5 In-Situ Combustion and THAI
- III.1.6 Other Technologies to Supply Heat

III.2 Upgrading Technologies
- III.2.1 Recent Upgrading Processes
- III.2.2 Newer Upgrading Processes
- III.2.3 Partial Upgrading

III.3 GHG Emissions from Production and Refining of Heavy Oil

Section IV: Heavy crude value and pricing

IV.1 Valuation of Crudes in the Refining Market
IV.2 Heavy Crude Oil Process and Commercial Implications for the Refining Industry
IV.3 Heavy Crude Oil Prices and Differentials
IV.4 Pricing Outlook
Section V. Summary and Implications

V.1 Resources 125
V.2 Upstream Development Summary 125
V.3 Production Forecasts 127
V.4 Crude Disposition Summary 131

LIST OF TABLES

Table II.1: Production of Heavy Crude Oils < 23º API Gravity 13
Table II.2: Heavy Oil Reserves and OOIP by Region 15
Table II.3: Bitumen Reserves and OOIP by Region 16
Table II.4: Average Properties of Crude Oils and Natural Bitumen 17
Table II.5: Outlook for Canadian Heavy Oil Production 24
Table II.6: Properties of Canadian Bitumen Blends 24
Table II.7: Current and Planned Upgraders in Canada 26
Table II.8: Properties of Synthetic Crude Oil from Canadian Upgraders 27
Table II.9: Capital Costs of Oil Sands Projects per Barrel/Day Capacity 28
Table II.10: Operating Costs for Typical Oil Sands Projects 29
Table II.11: Condensate and SCO Diluent Forecast 30
Table II.12: Mexico Heavy Oil Production Forecast 34
Table II.13: United States Heavy Oil and Bitumen Forecast 40
Table II.14: North American Heavy Crude Production 41
Table II.15: North American Heavy Crude Disposition 42
Table II.16: Existing Heavy Oil Pipelines 46
Table II.17: Proposed Pipelines from Canada 46
Table II.18: Current and Proposed Diluent Pipelines to Alberta, Canada 47
Table II.19 Brazil Medium-Heavy and Heavy Oil Production Forecast 50
Table II.20: Venezuela Extra-Heavy and Heavy Oil Production and Outlook 52
Table II.21: Venezuela Orinoco Belt Production Outlook 53
Table II.22: Outlook for Heavy Crude and SCO from Venezuela 53
Table II.23: Colombia Heavy Oil Outlook 55
Table II.24: Ecuador Heavy Oil Outlook 56
Table II.25 Peru Heavy Oil Outlook 57
Table II.26: South America Heavy Crude Outlook 57
Table II.27: South America Heavy Crude Disposition 58
Table II.28: U.K. Heavy and Medium-Heavy Oil Production and Forecast 61
Table II.29: U.K. Heavy Oil Field OOIP and Reserves 61
Heavy Crude Oil: A Global Analysis and Outlook to 2030

Excerpt
Table II.15: North American Heavy Crude Disposition
(Thousand barrels per day)

<table>
<thead>
<tr>
<th>Production</th>
<th>2009</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>1397</td>
<td>1533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>1590</td>
<td>1472</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>532</td>
<td>517</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>400</td>
<td>390</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadian Crude</td>
<td>390</td>
<td>380</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico Crude</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>530</td>
<td>532</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>2469</td>
<td>2501</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadian Crude</td>
<td>1007</td>
<td>1153</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico Crude</td>
<td>930</td>
<td>830</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>532</td>
<td>517</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3399</td>
<td>3423</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>120</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Hart Energy Consulting

United States

Nearly all of the crude oil produced in the United States is refined locally or within the PADD area where it is produced. U.S. refining capacity has been slowly increasing through expansions, even though no new refineries have been built for several decades. Much of the recent expansion in U.S. refining capacity has been associated with increasing the capability to process heavy crude.

Expansions are continuing at existing refineries, many of which are designed to further increase capacity to refine heavy oils. The major heavy crude refining areas are California, which refines the heavy oil produced in the state as well as imports from Mexico and South America, the Texas Gulf Coast, which refines heavy crude from Mexico, Venezuela and other countries, and the northern Midwest, which refines most of the bitumen and conventional heavy oil exported from Canada. A brief summary of each PADD region and the expansions that have been announced or are in the construction phase are summarized below.

PADD I:

PADD I is located along the East Coast of the United States with refineries in Delaware, New Jersey, Pennsylvania and West Virginia. There are 13 refineries with a total capacity of 1.7 million b/d. Three of these refineries process 0.04 million b/d Canadian heavy oil. Total heavy oil processed in 2006, including imports from other regions was 0.26 million b/d. No heavy oil capacity expansions have been announced.

PADD II:

PADD II, located in the U.S. Midwest, is the largest market for western Canadian crude oil and has a refining capacity of almost 3.6 million b/d. Northern PADD II has 12 refineries in Illinois, Indiana, Minnesota, North Dakota, Ohio (Toledo) and Wisconsin that run about 0.56 million b/d of heavy
Total refining capacity in northern PADD II is 2.1 million b/d. The nine refineries in southern PADD II, located in Kansas, Oklahoma and Tennessee, have a total refining capacity of 1.0 million b/d but process only 0.06 million b/d of heavy crude. Eastern PADD II is located east of Chicago and Patoka, but excludes Toledo, Ohio. It has a refining capacity of 0.5 million b/d and processes 0.02 million b/d of heavy oil.

The largest heavy oil capacity expansions are planned for the PADD II region to accommodate higher heavy oil and synthetic crude volumes from Canada. The following expansions are in various stages of completion:

- The WRB Refining (ConocoPhillips/Encana joint venture) Wood River, Ill. refinery expansion that increased heavy oil capacity by 100,000 b/d was completed in 2007.

- Marathon Detroit, Mich. refinery, a US$1.9 billion project, will increase the refinery’s heavy oil processing capacity, including Canadian bitumen blends, by about 80,000 b/d, and will increase its total crude oil refining capacity by about 15%, from 100,000 b/d to 115,000 b/d. This project was approved by Marathon’s board in late 2007.

- BP is seeking permits to expand the Whiting, Ind. refinery to increase heavy oil processing from 90,000 b/d to 350,000 b/d. This project has been stalled because of concerns over water discharge. The expansion is scheduled to be complete by 2011.

- BP Refinery, Toledo Ohio, with a crude distillation capacity of 155,000 b/d of which 60,000 b/d capacity is currently heavy oil, will be expanded to process approximately 170,000 b/d of heavy oil and bitumen by 2015. The expected investment is around US$2.5 billion.

- Frontier’s El Dorado, Kan. refinery will undergo a small expansion to increase heavy oil capacity by 5,000 b/d.

- Marathon’s Catlettsburg, Ky. refinery is under a conceptual study to add 150,000 b/d heavy oil capacity.

- Marathon is conducting a study to expand the Robinson, Ill. refinery by 180,000 b/d heavy oil capacity.

- Husky purchased Valero’s Lima, Ohio refinery and is currently reviewing options for reconfiguring and expanding the refinery to process heavy crude oil and bitumen.

PADD III:
PADD III, which includes Alabama, Arkansas, Louisiana, Mississippi, New Mexico and Texas, has 56 refineries with total capacity of 7.99 million b/d, of which a significant portion is heavy crude oil processing capability. In 2006, PADD III refineries imported over 5.6 million b/d of crude oil, 2.15 million b/d of which was heavy crude oil. In recent years, PADD III refineries have added six new cokers and other facilities to allow refineries in order to run heavier, sour grades of crude oil. New heavy oil capacity expansions that have been recently completed or are planned are: the WRB Borger refinery expansion by 25,000 b/d heavy oil capacity, completed in 2007; the Navajo Refining Artesia, N.M. refinery expansion to 40,000 b/d in 2008; and the Motiva refinery joint venture between Shell and Saudi Aramco, which will expand its capacity by 325,000 b/d. The expansion will process heavy and medium heavy sour crude oils.

PADD IV:
PADD IV which includes Colorado, Montana, Utah, Wyoming and Idaho is the smallest of the districts, with a total capacity of 0.66 million b/d. They run crude produced locally and from Canada of which 0.10 million b/d is heavy oil.
PADD V:
PADD V includes California, with 21 refineries, the state of Washington, with 5 refineries, and Alaska with 6 refineries. Alaska only refines crude produced in state. Alaska North Slope (ANS) crude is also shipped to California and Washington. In 2006 California received 16% of its crude supply from Alaska. Washington refineries process mainly medium sour crude oil and have historically sourced most of their feedstocks from Alaska (currently 70%). They also refine small amounts of heavy oil from Canada.

Overall, PADD V refineries process 0.66 million b/d of heavy oil: 0.45 million b/d domestic and 0.21 million b/d imported.

One expansion is planned, the ConocoPhillips Ferndale, Washington expansion, which will add 25,000 b/d heavy processing capacity.

Canada
Canadian heavy oil production, including heavy synthetic crude was 1.3 million b/d in 2009. This far exceeds the processing capability of refineries in Western Canada and therefore a large portion of the production (0.9 million b/d) is exported to the U.S. Western Canadian refiners process about 70% of the heavy crude volume remaining in Canada and Ontario processes the remainder. Figure II.9 illustrates the volume of heavy oil processed in refineries in the U.S. and Canada.

The traditional markets (i.e. western Canada, Ontario, upper PADD II, PADD IV and the state of Washington) will continue to process western Canadian crude oil. With the expansions noted previously, particularly those in PADD II, the heavy crude processing capability will be greatly enhanced. There is potential for expansions into new markets such as Québec, eastern PADD I, southern and eastern PADD II, PADD III, California and the Far East. The latter will be accommodated by pipeline expansion projects currently underway or under consideration.

In Western Canada, Petro-Canada has recently completed a conversion project that will allow processing 100% oil sands feed. Consumer’s Co-Operative refinery plans to expand Canadian processing as well. Additional refinery conversions are anticipated that will increase domestic refining capabilities.
Pipelines
Pipeline capacity from Canada to the United States is adequate for current production, but new pipelines will be necessary to move the increased volumes. The map in Figure II.10 depicts the major crude oil pipelines between and within the US and Canada. Capacities and locations are shown in Table II.16.

Figure II.10: Crude Oil Pipelines in North America

Source: Hart Energy Consulting
Heavy Crude Oil: A Global Analysis and Outlook to 2030

For any additional information including questions on price and ordering, please contact Zach Muroff, Business Development Director, Hart Energy Consulting, +1.713.260.6429 or zmuroff@hartenergy.com